STICHWORT	SCHWERPUNKTE	BEISPIELE	МН
Reelle Zahlen	QuadratwurzelnDie Menge IR	Für a ≥ 0 ist \sqrt{a} (Quadratwurzel aus a) diejenige nicht negative Zahl, deren Quadrat a ergibt. Rechenregeln für Quadratwurzeln: $\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$; $\sqrt{a} : \sqrt{b} = \sqrt{a \cdot b}$ 1) Rechne im Kopf: a) $\sqrt{\frac{4}{9}}$; b) $\sqrt{3} \cdot \sqrt{75}$; c) $\sqrt{96} : \sqrt{6}$ 2) Vereinfache so weit wie möglich: $\sqrt{\frac{15a^5}{169b}} : \sqrt{\frac{25a}{39b^2}} = \sqrt{\frac{15a^5}{169b \cdot 25a}} = \sqrt{\frac{3a^4 \cdot 39b^2}{169b \cdot 5}} = \sqrt{\frac{3a^4 \cdot 3b}{13 \cdot 5}} = 3a^2 \sqrt{\frac{b}{65}} = \frac{3}{65}a^2 \sqrt{65b}$ Die rationalen Zahlen (Menge Ω) lassen sich als endliche oder periodische Dezimalbrüche darstellen. Zahlen, die sich nicht durch endliche oder periodische Dezimalbrüche darstellen lassen, heißen irrationale Zahlen incht zusammen die Menge der reellen Zahlen IR.	I/24-27 II/12-15
Quadratische Funktionen, quadratische Gleichungen	 Die binomischen Formeln Graphen und Nullstellen quadratischer Funktionen Lösen von quadratischen Gleichungen (graphisch und rechnerisch) 	Binomische Formeln: (1) $(a+b)^2 = a^2 + 2ab + b^2$; (2) $(a-b)^2 = a^2 - 2ab + b^2$; (3) $(a+b)(a-b) = a^2 - b^2$ Eine Funktion mit der Gleichung $f(x) = ax^2 + bx + c$, $(a\neq 0)$ heißt <u>quadratische Funktion</u> . Sie lässt sich durch quadratische Ergänzung auf <u>Scheitelform</u> $f(x) = a(x-d)^2 + e$ bringen. Der <u>Scheitelpunkt</u> der zugehörigen Parabel ist $S(d/e)$. Die Lösung(en) der quadratischen Gleichung $ax^2 + bx + c = 0$, $(a\neq 0)$ ist (sind) die <u>Nullstelle(n)</u> der quadratischen Funktion. <u>Lösungsformel</u> : $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. 3) Bringe auf Scheitelform und gib den Scheitelpunkt an: $f(x) = 0.5x^2 - x + 0.75$ Lösung: $f(x) = 0.5x^2 - x + 0.75 = 0.5(x^2 - 2x + 1.5) = 0.5(x^2 - 2x + 1 - 1 + 1.5) = 0.5(x - 1)^2 + 0.25$; $S(1/0.25)$ 4) Löse folgenden Gleichungen mit der Lösungsformel: a) $x^2 - 3x - 10 = 0$; b) $-0.5x^2 + x + 7 = 3x$	II/9 II/52-54 II/30-32
Anwendungen quadratischer Funktionen	ExtremwertproblemeSchnittpunkte vonFunktionsgraphen	 Führt ein Extremwertproblem auf eine quadratische Gleichung, so erhält man den Extremwert mit Hilfe des Scheitelpunkts der zugehörigen Parabel. Schnittpunkte von Funktionsgraphen erhält man rechnerisch, indem man die Funktionsterme gleichsetzt und die zugehörige Gleichung löst. 5) Eine Firma verkauft monatlich 800 Stück eines Bauteils zu einem Stückpreis von 10€. Senkt die Firma pro Stück den Preis um 0,10€, dann steigt der Absatz um 20 Stück, senkt sie den Preis um 0,20€, dann steigt der Absatz um 40 Stück, usw. Bei welcher Preissenkung erhält die Firma die höchsten Einnahmen? 6) Bestimme die Schnittpunkte der Geraden y = x - 1,5 mit der Parabel y = x² - 4x + 2,5 rechnerisch. Kontrolliere Dein Ergebnis graphisch. 	
Terme	n-te WurzelPotenzen mit rationalenExponenten	Unter $\sqrt[n]{a}$ (n-te Wurzel aus a) versteht man diejenige nichtnegative Zahl, deren n-te Potenz den Wert a hat. (n \in IN\{1} und a \in IR $_0^+$). Es gilt: $a^{\frac{p}{q}} = \sqrt[q]{a^p}$ und $a^{-\frac{p}{q}} = \frac{1}{\sqrt[q]{a^p}}$; insbesondere $a^{\frac{1}{n}} = \sqrt[n]{a}$ 7) Vereinfache so weit wie möglich: a) $\sqrt[3]{27z^9} \cdot (z^{-2})^{\frac{3}{2}}$, b) $x^{\frac{1}{2}} \cdot x^{\frac{3}{4}} \cdot \sqrt[4]{x}$, c) $\sqrt{a} \cdot \sqrt[3]{a} : a^{-\frac{1}{6}}$	I/26-27 II/14-15

STICHWORT	SCHWERPUNKTE	BEISPIELE	МН
Satzgruppe des Pythagoras	KathetensatzHöhensatzSatz des Pythagoras	In einem rechtwinkligen Dreieck ABC gilt: Höhensatz: h² = q·p 1. Kathetensatz: b² = c·q und 2. Kathetensatz: a² = c·p Satz des Pythagoras: a² + b² = c² 1) Berechne alle fehlenden Streckenlängen im ΔABC wenn bekannt ist, dass a) a = 4 cm, b = 3 cm b) p = 2 cm, h = 5 cm 2) Ein Dachstuhl hat die Form eines gleichschenkligen rechtwinkligen Dreiecks. Die Breite des Dachstuhls beträgt 9,8m. Berechne die Höhe des Dachs und die Länge der Dachschrägen auf eine Dezimale genau!	III/24-25
Trigonometrie am rechtwinkligen Dreieck	Sinus, Kosinus und TangensWerte für besondere Winkel	Definition der <u>trigonometrischen Funktionen</u> im rechtwinklingen Dreieck: $\sin \alpha = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} = \frac{a}{b}; \cos \alpha = \frac{\text{Ankathete}}{\text{Hypotenuse}} = \frac{c}{b}; \tan \alpha = \frac{\text{Gegenkathete}}{\text{Ankathete}} = \frac{a}{c}$ 3) Berechne den Winkel α im ΔABC auf zwei Dezimalen genau, wenn a) $a = 2cm$; $b = 7cm$ b) $c = 4cm$; $a = 2cm$ 4) Über ein Tal führt eine Brücke (siehe Skizze). Die Brücke ist 75 Meter lang. Der rechte Hang fällt unter einem Winkel von 34°, der linke unter einem Winkel von 40° ab. Berechne die größte Höhe h vom Tal bis zur Brücke!	III/54-55
Raumgeometrie	 Netz Oberfläche und Volumen Winkel- und Streckenbestimmungen 	$V_{\text{Prisma}} = G \cdot h$ $O_{\text{Prisma}} = 2 \cdot G + M$ $V_{\text{Zylinder}} = r^2 \pi h$ $O_{\text{Zylinder}} = 2r^2 \pi + 2r \pi h$ $O_{\text{Sylinder}} = 2r^2 \pi + 2r \pi h$ $O_{\text{Kegel}} = r^2 \pi + r \pi b$ $O_{\text{Kegel}} = r^2 \pi + r \pi b$ $O_{\text{Wegel}} = r^2 \pi + r \pi b$ O	III/43-45

STOCHASTIK - GRUNDWISSEN KLASSE 9 - HEINRICH-SCHLIEMANN-GYMNASIUM FÜRTH

OTOOTIASTIK G	I =		
STICHWORT	SCHWERPUNKTE	BEISPIELE	MH
Zusammengesetzte Zufallsexperimente	BaumdiagrammPfadregeln	 1. Pfadregel: Bei einem mehrstufigen Zufallsexperiment erhält man die Wahrscheinlichkeit eines Ergebnisses, indem man die Wahrscheinlichkeiten längs des zugehörigen Pfades multipliziert. 2. Pfadregel: Bei mehrstufigen Zufallsexperimenten erhält man die Wahrscheinlihkeit eines Ereignisses, indem man die Summe der Wahrscheinlichkeiten der Pfade bildet, die zu dem Ereignis gehören. 6) Ein Würfel wird dreimal nacheinander geworfen. Mit welcher Wahrscheinlichkeit erscheint a) keine Sechs, b) genau eine Sechs, c) höchstens eine Sechs, d) mindestens eine Sechs? 7) Georg, Irmgard und Luisa werfen jeweils einmal mit einem Basketball auf den Korb. Ihre Trefferwahrscheinlichkeiten betragen 15%, 20% bzw. 30%. Mit welcher Wahrscheinlichkeit geht der Ball genau zweimal in den Korb? 	